Dequantization Transform and Generalized Newton Polytopes

نویسندگان

  • G. L. LITVINOV
  • G. B. SHPIZ
چکیده

For functions defined on Cn or Rn+ we construct a dequantization transform f 7→ f̂ ; this transform is closely related to the Maslov dequantization. If f is a polynomial, then the subdifferential ∂f̂ of f̂ coincides with the Newton polytope of f . For the semiring of polynomials with nonnegative coefficients, the dequantization transform is a homomorphism of this semiring to the idempotent semiring of convex polytopes with respect to the well-known Minkowski operations. Using the dequantization transform we generalize these results to a wide class of functions and convex sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dequantization Transform and Generalized Newton Polytopes

For functions defined on C or R+ we construct a dequantization transform f 7→ f̂ ; this transform is closely related to the Maslov dequantization. If f is a polynomial, then the subdifferential ∂f̂ of f̂ at the origin coincides with the Newton polytope of f . For the semiring of polynomials with nonnegative coefficients, the dequantization transform is a homomorphism of this semiring to the idempo...

متن کامل

Single-lifting Macaulay-type formulae of generalized unmixed sparse resultants

Resultants are defined in the sparse (or toric) context in order to exploit the structure of the polynomials as expressed by their Newton polytopes. Since determinantal formulae are not always possible, the most efficient general method for computing resultants is as the ratio of two determinants. This is made possible by Macaulay’s seminal result [15] in the dense homogeneous case, extended by...

متن کامل

Quantum Logic Dequantization: Information Loss

An attempt to ascertain reasons of the quantum logic efficiency was made. To do this, we reduce the complete set of elementary quantum logic operations to the classical one via taking the semi-classical limit (dequanti-zation). We estimate the amount of information loss for any element of the set and obtain general expression for the loss estimation of any quantum algorithm under dequantization...

متن کامل

Einladung Im Oberseminar Reelle Geometrie Und Algebra Hält Coercive Polynomials and Their Newton Polytopes

Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. We analyze the coercivity on R of multivariate polynomials f ∈ R[x] in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on the vertex set of their Newton polytopes. These cond...

متن کامل

Multidegrees of Monomial Rational Maps

We prove a formula for the multidegrees of a rational map defined by generalized monomials on a projective variety, in terms of integrals over an associated Newton region. This formula leads to an expression of the multidegrees as volumes of related polytopes, in the spirit of the classical Bernstein-Kouchnirenko theorem, but extending the scope of these formulas to more general monomial maps. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009